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Abstract 

The three-dimensional linear interaction problem between attitude control of 
spacecraft and the flexibifity of spacecraft is solved in the frequency domain 
by using the concept of Fourier transform. The transfer-function matrix of the 
system formed by the linear structure and the linear control circuit is determined 
from the modal characteristics of the structure, using the modal combination 
concept and the electrical characteristics of the control loop. A large number of 
elastic modes can be used for the structure. Time histories are obtained by 
inverse Fourier transformation. The three angles of the attitude of the spacecraft 
with respect to an inertial frame of reference are computed for any disturbance 
torques applied about the three axes of the spacecraft. A stability study is made 
by direct inspection of the responses to unit impulse for the three attitude angles 
or, alternatively, by the display of a determinant. A computer program has been 
written to compute all of the necessary transfer functions, and the fast Fourier 
transform algorithm has been used to compute Fourier transforms. The program 
is used on a teletype terminal. 

JPL TECHNICAL REPORT 32-7478 vii 



A Frequency Domain Solution for the Linear Attitude-Control 
Problem of Spacecraft With Flexible Appendages 

1. Introduction 
The anticipated advent of spacecraft with large, flexible 

appendages, such as long solar panels or large antennas, 
introduces vibrational structural modes that fall in the 
frequency range of the attitude-control system. Con- 
sequently, a coupling exists between structural flexibility 
and the attitude-control system and imposes constraints 
on the study of the stability of the system. This problem 
has been reviewed and studied at length (Ref. 1). 

A nontraditional frequency-domain/Fourier-transform 
approach is proposed in this report. Small motion is 
assumed to linearize the equations. The open-loop trans- 
fer function (frequency response) of the flexible space- 
craft, relating the attitude angles to the control param- 
eters, is computed numerically in terms of discrete real 
frequencies over the frequency range of interest. The 
problem is then specialized to attitude control by control 
jets, the transfer function of the control loop is intro- 

duced, and the transfer function of the closed-loop system 
relating attitude angles to a disturbance is computed 
numerically. The response to any external transient dis- 
turbance torque can be computed first in the frequency 
domain, then in the time domain, by inverse Fourier 
transformation. The stability of the system can be studied 
by the concept of the response to the unit impulse. Use 
of real frequency w associated with the Fourier transform 
technique permits a numerical computation of the time 
history of the response to the unit impulse by inverse 
Fourier transformation, giving a stability criterion by 
direct inspection. 

The Fourier transform technique is in contrast with the 
more traditional Laplace transform technique, which is 
usually limited to algebraic computation in terms of a 
complex argument s. The proposed technique has the 
further advantage over the Laplace method of permit- 
ting the use of a large number of elastic modes without 
any computational difficulties. 
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II. Technical Discussion 

Let it be assumed that the spacecraft is composed of 
a rigid bus and flexible appendages, such as solar panels 
or antennas attached to the bus (Fig. 1). Small motion 
will be assumed to linearize the equations. The frequency- 
domain approach will be used when convenient. 

A. Equations of Motion of One Appendage 

The appendage is attached to the bus at a number of 
points that have no relative displacement because the 

referred to as the base of the appendage. It is then 
natural and convenient to introduce the flexibility of the 
appendage in its deflection with respect to those attach- 
ment points, The corresponding modes of vibration will 
be called cantilever modes (i.e., modes for which the 
base is fixed, as shown in Fig. 2). 

bus is assumed to be rigid, The attachment points are 2 

With reference to Fig. 1, Ax1x2x, is a system of co- 
ordinates of origin A fixed with respect to the bus to 
describe the motion of the appendage relative to the 
bus. This system will be referred to as the x system of 
coordinates. Let it be assumed that p forces g1,g2, - * -,W 
are applied to the appendage at points PI, P2,  e.', Pp (see 
Fig. 2). If small motion and proportional damping are 
assumed (Ref. 2), the equations of motion of the ap- 
pendage, expressed in terms of the cantilevered n normal 
modes, are Fig. 2. Cantilever modes: (a) cantilevered appendage; 

(b) free body diagram for appendage and bus 
3P 

mi (q j  + 2 w i & q j  + w ; q j )  = +j&k 
k=1 where 

mi = generalized masses 
i = 1,2;.. ,n (1) 

w j  = natural frequencies 

ti = modal dampings 

qi = generalized displacements 

e ,  3 p )  = all components of p forces at 9% (k = 1,2, 
PI, p,, * .  *, P p  

those points 

Equationts) (1) can be written in matrix form as 

+ j k  = corresponding mode shapes at 

FRAME FIXED fo&)ws: 
IN RIGID BUS 

Fig. 1. Sketch of spacecraft bus and appendages M e e q + C e e q + K e e q = q z g  (2) 
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where q = { q j }  = column of generalized displacements 

g = { 5Fk} = column of components of forces ap- 
plied at points P,, Pz, 1 .  -, P ,  Me, = mj J = n X ngeneralizedmass matrix 

C e e  C 2wjtjmj J = n X n generalized damping matrix qe = [ + k j ]  = 3 p  X n matrix of elastic mode shapes 
K,, = e O S  mj J = n X n generalized stiffness matrix at P,,  Pz, . e . ,  P ,  

The equations of motion of the appendage with respect to an inertial frame 0,YlYzY3 of reference can be obtained 
from Eq. (1) in the standard manner by “freeing” the system of Eq. (2) (Ref. 3). Small rotation of the base of the 
appendage is assumed. Because the base is attached to the bus, reaction forces and moments exist on the base 
and must be introduced in the equations. Expressed in the moving system of coordinates Ax1x2x3, the equations 
of motion are 

(3) 

where 

M,, = rigid body mass matrix of appendage, including 
mass, static moment, and moment of inertia 
with respect to A (6 X 6) 

M,, = rigid elastic coupling matrix (6 X n) 

Me, = transpose of M,, 

(:i) 
= column of three translations of point 

A and three rotations of base of 
appendage in x system 

r =  

I f l  \ ”  

= column of components of resultants 
of reaction forces and moments with 
respect to A due to bus in x system 

f; = 

2 

qT = 3p X 6 matrix of rigid-body mode correspond- 
ing to points P1,P2, *.., Pp (see Appendix C) 

The variable q in Eq. (3) is of no direct interest, and 
will be eliminated; this elimination is readily made in the 
frequency domain. To this end, one may expand Eq. (3) 
and take the Fourier transform of both sides 

where the bar means Fourier transform of the time- 
variable functions F, 4, f i ,  and$; Le., 

in which o is the angular frequency, i = (-l)?‘”, and Z 
is a frequency-dependent diagonal matrix defined as 
follows : 

z = Z(O) = f zj a (7) 

with 

Elimination of between Eqs. (4) and (5)  gives 

8. Equations of Motion of Bus 

Let OXlX,X3 be called a system of coordinates of 
origin 0 fixed in the bus. This system will be referred to 
as the X system of coordinates (point 0 will be different 
from A in general). The matrix equations of motion of 
the bus are 
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where where 

M’ = mass matrix of bus, including mass, static mo- 0 x3 -x,  
ment, and moment of inertia about 0 N 

(13) x =  -x3 0 [ x ,  -x ,  71 
is formed from the components X,,X,,X, of point A in 
the X system and b is the matrix of the direction cosines 
between the x and X systems. 

The matrix b is orthogonal 

R =  = column of three translations of point 0 
and three rotations of bus in X system 

b3i b,, b33 

Fg = = column of components of resultant of 
external forces and torques with respect 
to 0 applied on bus in OX,X,X3 system 

for which 

bij =I COS (xi, X j )  

where ( x i , X j )  is the angle between the xi axis of system 
x with the X j  axis of system X .  

Similar to those of Eq. (ll), the reaction forces and 
moments expressed in the x and X systems are related by = Of components Of Of 

reaction forces and torques with respect 

OX,X,X3 system (16) to 0 caused by appendage reactions in €; = BTf4 

C. Equations of Motion of System 

Combining Eqs. (9), (lo), (ll), and (16), and elimi- 
nating the reaction forces and moments, one finally 
obtains 

To obtain the global equations of motion, one may 
eliminate the reaction forces between Eqs. (9) and (10). 
However, because different systems of coordinates are 
used, transformation of coordinates is necessary. 

LM’ BT L M , ~  - M,eZMe,lB1 R = 

+ BT[(p: - MTeZ(p:]3 

(17) 

The 
is related to the acceleration R of point o in the x 
system by 

i: Of point A in the To simplify the presentation, it is convenient to introduce 
two frequency-dependent 

and 
In Eq. (ll), B is an orthogonal transformation matrix 

defined as follows: N = N(o) = 9: - M,,Z(o) 9; (19) 

Equation (17) becomes 

[M’ + BTDB] R = FZ + B T N g  (20) 
(12) 

4 JPL TECHNICAL REPORT 32- 7 478 



D. Equation of Motion of System With Several .. x ;  el 
Appendages R={:}, X=/ : i / ,  .. e=\: \  (25) 

If M appendages are attached to the bus, there will be 
a transformation matrix B,; matrices D,, Nm, gGnZ for each 
appendage m; and the equation of motion for the total 
system will be obtained by adding each new appendage 

H X X  I Hxe 

= [ Hexi Heel' = [$I (26) 
to Eq. (20); i.e., yielding .. .. .. 

Finally, the attitude-angle accelerations 61,8,,83 are re- 
lated to the forces F,,F2,F3 by Y 1-  ,=I 

M 
M' + B;D,B, R = pt + C BLN,g, (21) 

E. Structural Transfer Function for Attitude Control 
by Control Jets 

The right side of Eq. (27) is equivalent to a torque % 
applied to the structure; i.e., 

(28) 

P F = T  (29) 

P(w) = P [ Q e  - Hex Hi; Q x ]  (30) 

In the case of attitude control by cold gas jets, the 
jets (or thrusters) occur in pairs to apply forces on 
the bus or the appendages that are equal and opposite 
so that pure torques will be produced. It will be as- 
sumed that the control is made about the three axes 
OX,,OX,,OX, (i.e,, the thrusters apply control forces 
F,, -F1, F2,  -F,, Fa,  -Fa, which one may express in 
vehicle coordinates OX,X,X,). Therefore, the right side of 

eters FI,F2,F3 : 

[ Q e  - Hex Hi$ Q x ]  = 'F 

or 

where 

Eq. (21) can be expressed in terms of only three param- 
- 

In addition, the angular accelerations 6 are related to the 
- M angles 8 by 

- .. 
W2 e (31) e =  - 

F,O + C B;Nm Om = Q(") p (22) 
m= 1 

where 
Therefore, 

- e = y T  

where 

and Q(w) is a 6 X 3 frequency-dependent matrix that is Y [w' Me, - W' Hex H&Hxe I-' (33) 
dependent upon the location of the control forces. An 
expression of Q(w) is given in Appendix A, Eqs. (A-7)- 
(A-10). 

F. Equations of Motion of Controlled Spacecraft 

The control loop on the structure (Fig. 3) may now be 
introduced, with the assumption that the attitude sensors 
are actuated by the angles 8. The angles 8 are then fed 
into a control system, which has a transfer-function matrix 
S(O), to produce the three thruster parameters p applied 
at given locations of the structure: 

If the matrix premultiplying R is called H, 

Y 
H = H(o) =M' + CB;D,B, (23) 

,= 1 

i7 = -S (0 )8  (34) then Eq. (21) becomes 
- 

H R = Q P  (24) Then the thruster parameters are transformed into a 
control torque $, by the thruster location matrix P(0): 

The translations X i  ,X ,X 3" are now eliminated from 
Eq. (24). To this end, the following partitioning is done: T, = P(0) F (35) 
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++- STRUCTURE 
Y (w) 

- 
F CONTROL THRUSTER 

S(W)  
LOCATIONS -4 
P(W)  

Fig. 3. Attitude control loop 

If it is now assumed that there exists an external 
disturbance-torque column T d ,  that acts on the whole 
system, the torque T is the sum of T, and T d ,  and Eq. (28) 
may be rewritten as 

Using Eqs. (34) and (35), one finally obtains 

8 =  [I + YPS]-"rT, (37) 

where 1 is the unit matrix. Equation (36) is a general- 
ization of the classical one-dimensional control equation 
for a tridimensional elastic spacecraft. Because Y is not 
obtained directly, but through an inversion, it is more 
practical to rewrite Eq. (37) for numerical computation 
as follows: 

- 
e = $e*d (38) 

where 

G. Computation of Control Matrix S(0) 

Each term of the control matrix S(w) is expressed as a 
ratio of products of second-order polynomials in O; Le., 

where aik, pik ,  y i k ,  a$, and vg are coefficients ob- 
tained from the control circuits and K j k  is the gain of 
each loop or coupling loop of the control circuits. This 
expression requires that the transfer function of the 
control loop be computed in terms of second-order poly- 

nomials. If one term is of the first order, then the co- 
efficient of the term in w2 is set equal to zero. 

H. Response to a isturbanee Torque 

Equation (38) can be used to study the response to 
any disturbance-torque time history Td(t). The procedure 
is to compute numerically the Fourier transform T~(w) of 
the time history. 

Td(W) = \+@Td(t) exp ( - id) dt  (41) 
-W 

for a range of frequencies w = 274, where f is the fre- 
quency in Hz. The Fourier transform column * d ( o )  is 
then premultiplied by the transfer-function matrix %(W) 

computed for the same range of frequencies, according 
to Eq. (38), to  obtain the Fourier transform of the response; 
i.e., the orientation of the bus G(w). Finally, the time 
history of the response is obtained by inverse trans- 
formation: 

1. Stability Study by Unit-Impulse Response 

The instability (if any) will be evidenced by the com- 
putation of the response, as shown in Eq. (42). However, 
a special type of excitation can be chosen; namely, the 
unit impulse. To this end, a delta function S ( t ) ,  which is 
infinite for t = 0 and zero for t # O ,  is used as a dis- 
turbance torque on each direction in turn. For example: 

The Fourier transform of these torques is then 

(43) 

and the Fourier transform of the control angles is 

6 JPL TECHNICAL REPORT 32-1478 



where Sl is the first column of transfer-function matrix 
S ( W ) .  The corresponding time histories of the responses 
are 

Responses corresponding to unit-impulse torques 
TdZ = 6 ( t )  and Td3 = 6 ( t )  are obtained in the same manner. 
The result is that a response to the unit-impulse matrix 
h(t) corresponds to the transfer-function matrix S: 

with 
1 r-cm 

a, /3 = 1,2,3 (48) 

The matrix h(t)  is a symmetric matrix 

The display of the time history of the terms hap(t) of 
the matrix h(t) provides a criterion for the stability of 
the system by direct inspection (Fig. 4). The system is: 

(1) Stable if all hab(t) += 0 for t 3 co . 

(2) Unstable if any h,@(t) += 00 for t 3 00. 

J. Programming 

The method outlined herein has been programmed on 
a timeshare digital computer terminal. The FORTRAN I1 
language was used, and the plotting was done directly 
at the terminal site. 

The main functions of the program are to: 

(1) Compute the transfer-function matrixS(w) for a 
range of frequencies 0 and a range of gains K j k  in 
accordance with Eq. (39). 

(a) STABLE 

(b) UNSTABLE 

I 

t -  

Fig. 4. Graphs of system stability in terms of unit- 
impulse response: (a) stable; (b) unstable 

(2) Plot the modulus and phase angle of each term 
S.~(W) of the matrix S ( w ) :  

(3) Compute the inverse transfer function of each term 
of the matrix S(W) to give the impulse-response 
matrix h(t) in accordance with Eq. (48). 

(4) Plot each term of h(t) as a function of time. 

The program can handle a maximum of 10 appendages, 
each having a maximum of 20 normal modes. The max- 
imum number of terms in the numerator and the denomi- 
nator of the control loops is 10. 
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The inverse Fourier transforms are computed using the 
fast Fourier transform algorithm of Cooley and Tukey 
(Ref. 4), as is shown in Appendix B. 

1.  Computation of determinant. In addition, the pro- 
gram can compute the determinant of the inverse of 

%(w): 

This determinant is zero for a certain value of frequency 
when the system is at the limit between stability and 

instability because the damping is zero for this frequency. 
For display purposes, it is more significant to plot the 
inverse of the determinant A(w)  and also to normalize 
this inverse. To this end, a new function R ( w )  is de- 
fined as follows: 

* * *  
where K,,, K,,, K , ,  are the product of the diagonal gains 
K,,, KZ2,  K, ,  by the moment arms d,,, dzz, d,, of the three 
thrusters with respect to 0. That is, 

An infinite peak of the modulus of R (w) indicates insta- 
bility at the frequency of that peak. The corresponding 
time history r ( t )  is also computed by inverse Fourier 
transform. The display of r (t) will indicate instability 
if r ( t )  is infinitely increasing with time. This latter method 
saves the computation of unit responses holp(t) if only 
stability is of interest. 

2. Example of application of method. The method has 
been applied to an idealized spacecraft consisting of a 
400-lb bus with two appendages having arbitrary orien- 
tation (Figs. 5 and 6). Appendage 1 weighs 200 lb; ap- 
pendage 2 weighs 300 lb. Each appendage has 8 degrees 
of freedom, and the cantilevered normal modes have 
been calculated. The natural frequencies are listed in 

i DIMENSIONS ARE IN INCHES 

Fig. 5. Idealized spacecraft with control jets 
on bus only 

Table 1. These frequencies are in the range of the fre- 
quencies of the control loops. A modal damping of 1.5% 
was chosen for all modes. 

The control circuit was assumed to be the same for the 
three axes of control. No control-loop cross coupling was 
considered. The following law was chosen 

K j k  (1 + 1.77 io) 
= (1 + 0,111 io) (1 - 0.00013 w2 + 0.008 io) (1 - 0.0036 w2 + 0.63 iw) 

i = k = 1,2,3 (54) 

for each control loop in the three directions. 
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Table 1. Natural frequencies of appendages 

Appendage 

1 

2 

Two cases were investigated for stability and response. 

Natural frequency, HZ 

0.0526 0.06965 0.4573 0.50 15 

0.0489 0.0649 0.4 100 0.4471 

In the first case, the control thrusters were placed on 
the rigid bus, as shown in Fig. 5. The same gain, 

*3 

35.5 

APPENDAGE 1 /  

DIMENSIONS ARE IN INCHES 

Fig. 6. Idealized spacecraft with control jets 
on bus and appendages 

was taken for the three directions of control. The response 
h(t) to unit-impulse torques in the three directions was 
computed for different gains K .  No instability was found. 
The time histories of the response are indicated in Figs. 
7-12 for K = 60, and clearly show that the system is 
stable for this gain. 

In the second case, two pairs of thrusters were placed 
on the tip of the appendages, as shown in Fig. 6, and 
the response* to unit-impulse torques was studied for 
a range of K j k  rather than the gain as*definzd in 
Eq. (53). An instability was found for Kll = K 2 ,  = K , ,  = 
1400, which corresponds to K,, = 40, K, ,  = 20, K,,  = 8.65, 
respectively. The time histories of the response are indi- 
cated in Figs. 13-18, and clearly show the instability. 

In addition, plots of the modulus and phase angle 
of R (o), the normalized inverse of the determinant A (w), 

are shown in Figs. 19 and 20, respectively. The corre- 
sponding inverse Fourier transform is shown in Fig. 21. 
The plot of Fig. 19 shows a very large peak, which 
indicates the instability occurring at the frequency of 
the peak; i.e., 0.08 Hz. The corresponding time history 
(see Fig. 16) also indicates instability. 

111. Conclusions 
The two examples mentioned earlier show that the 

frequency-domain approach is a valid method for deter- 
mining the stability of the attitude control of spacecraft 
with large, flexible appendages. The two advantages of 
the method are: (1) a large number of modes of vibration 
can be taken for the appendages and (2) the time history 
of the response can be easily calculated. This response 
is of particular interest in the determination of the 
pointing accuracy. 
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Appendix A 

Expression of Q(w) 

As mentioned in Section 11-E, the thrusters occur in 
pairs and the matrix Q(w) is related to the resultant force 
and moment on the bus E; and to the forces on the append- 
ages g, by Eq. (22). In the case of thrusters, because 
no local moment is applied on the bus but only concen- 
trated forces, it is convenient to incorporate F; in the 
summation sign of the right side of Eq. (22) by letting 
the subscript m start from zero; i.e., 

In Eq. (A-l), m = 0 corresponds to the bus and m#O 
corresponds to an appendage. For the bus, Bo is a unit 
matrix and No reduces to a rigid-body-mode matrix: 

Let it be assumed that there are six thrusters and that 
the ith thruster of intensity Fi is applied on the mth 

appendage at point M .  Let ai be called the column of 
the direction cosines of thruster force 2i and, for con- 
venience, ai will be taken with respect to the bus coordi- 
nates OX,X,X,. The components of the ith thruster in 
the appendage coordinate are then 

where b, is the transformation matrix from the bus co- 
ordinates to the appendage coordinates. 

There exists a -ith thruster that is equal and opposite 
to the corresponding ith thruster. Assume that this -ith 
thruster is applied on the nth appendage at point N :  

where b, is the transformation matrix for the nth ap- 
pendage. If one combines the three pairs of thrusters 
applied at points M, N ,  P ,  Q, S, and U, the right side of 
Eq. (A-1) becomes 

M - x BZN, g, = [B; NE b, a, - B: N,N b, a,] El + [BE N i  b, a, - B,'Nf b, a,] F, + [B; N; b, a, - B,T N,U b, a,] F, 
in=o 

(-4-6) 

where the superscript added to N, indicates the location of the thrusters for the corresponding mode shapes. 

where 

Partitioning Q (0)  yields 

Q (w) = [QI I Q z  Q31 (A-7) 

Q1 = B;N;b,a, - B; NE b,a, 

Qz = B i  N; bpaz - Bg N: bqa2 

(A-8) 

(A-9) 

Q3 = B;f Nf b, a, - BE N,U b,a3 (A-10) 

If more than one thruster is applied on a given append- 
age (or the bus), the subscripts of Eq. (A-6) are repeated. 

Finally, to construct the matrix Q(w), one needs: 

(1) The direction cosines ai for each thruster pair. 

(2) The location of each thruster. 

(3) The mode shapes at each thruster location. 
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Appendix B 

Numerical Computation of Fourier Transform 

The Fourier transform pair relating a function x(t) in 
the time domain to a complex function X ( f )  in the 
frequency domain is 

Therefore, Eq. (B-1) is replaced by 

X ( f )  = 1 x(t) exp ( - i 2 4  dt 03-8) 
0 

(B-l) The fast Fourier transform algorithm requires that the 
function x(t) be discretized into N discrete values where 

X ( f )  = ]*-x(t) exp (-i2+) dt 
-m 

N is a power of 2: 
X ( f )  exp ( i 2 ~ f t )  d f  (B-2) 

N = 2” 

with the condition that 
The discretized values of x(t) are xo, xl, -.., xN-l at 

equally spaced times to, tl, ..., t N - 1  in the interval 0,T 
[:I x(t) 1 dt (B-3) (Fig. B-1); i.e., 

ti = j A t  is convergent. 
j = 0,1,2, . . -, N - 1 (B-10) 

In Eqs. (B-1) and (B-2), the frequency f is in Hz, and 
is related to w by where A t  is the time increment. 

0 = 2lrf (B-4) The corresponding frequency-domain values of X ( f )  
are X o ,  xl, .*., XN-1 at the equally spaced frequencies 
f o ,  f l ,  ..., f N - l  (Fig. B-2); i.e., Equations (B-1) and (B-2) can be computed numerically 

using the fast Fourier transform algorithm (see Ref. 4), 
which permits a very rapid machine calculation. f k  = k A f  

k=0,1,2;..,N- 1 (B-11) 
It should first be noted that, because x ( t )  is real, there 

must be where Af is the frequency increment; i.e., 

(B-12) 
X ( - f )  = bv) (B-5) 1 1 A f = - = -  

T NAt 

The Fourier transform pair becomes 

where the asterisk means complex conjugate. This con- 
dition is satisfied for the system considered earlier. 
Consequently, Eq. (B-2) is replaced by 

X ( f )  exp (i2~ft) df 03-6) 
(B-13) 

and 
The condition of Eq. (B-3) is satisfied if one considers 

all practical purposes, the function x(t) will have a non- 
zero value only for an interval of time T and will be zero 
outside this interval; i.e., where 

a function x(t) that tends towards zero for t = 4 00. For N-1 

k=O 
xj = 2Af Xk wik (B-14) 

x(t) = O f o r t < O a n d t > T  

x(t) # 0 otherwise 03-71 
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c v 
X 

Fig. B-1 . Discretization of xIf) 

Then 

X ( t j )  = xj 

i t .  = - 
NAf 

and 

x ( f k )  = x k  

k 
f k  = 

(B-15) 

(B-16) 
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Fig. B-2. Discretization of X(f1 

The summation of Eq. (B-13), 

(B-17) 

is computed by the algorithm of Ref. 4 as a subroutine. 
The summation of Eq. (B-14) is identical to Eq. (B-17) 
except that - j  is changed to + j .  

The value of N ,  taken herein from the actual program, 
was N = 1024. 
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Appendix C 

Rigid-Body Mode for Appendage 

The 3 p  X 6 rigid-body mode matrix qr corresponding to points P I ,  Pz, - . * ,  Pp of an appendage is obtained by 
applying in turn, at the base A, a unit translation in the direction of each axis Ax,,Ax,,Ax, and a unit rotation 
about each of these axes. Because no local torque is applied at P I ,  P2, - e * ,  Pp, only the translations of these 
points are considered. The expression of qT is 

- 1 0 0  0 y: -y; - 
0 1 0 -y; 0 y: 

0 0 1 y; -y; 0 

1 0 0 0 yi; -y; 

0 1 0 -y; 0 y," 

0 0 1 y; -y: 0 

where y!, y5, yj, are the coordinates of points P j  (i = 1, 2, * .  *, p )  in appendage coordinates (see Fig. 2). 

Nomenclature 

B, B, 

b, b, submatrix of B 

geometric transformation matrix for mth 
appendage 

C,, generalized damping matrix of append- 
age 

D, D, frequency-dependent matrix for mth ap- 
pendage [Eq. (18)] 

9 8  components of forces on appendage 
F,, F,, F ,  thruster forces 

F column of thruster forces 

F$ column of resultant forces and moment 
on bus 

*--,SP forces on appendages 

g, gm column of components of forces applied 
on appendage 

f ,  f k  frequency, Hz 

ff 

f i  

column of reaction forces and moments 
at base of appendage 
column of resultant reaction forces and 
moments from appendage on bus 
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omenclatwre (contd) 

intermediate transfer function [Eq. (23)] 

submatrix of H 
submatrix of H 
submatrix of H 
submatrix of H 
terms of matrix % 

system transfer-function matrix 
submatrix of X 
submatrix of LX? 
submatrix of X 

terms of matrix h 
response to unit-impulse matrix 
submatrix of h 
submatrix of h 
submatrix of h 
gain 
normalized gain 

generalized stiffness matrix of append- 
age 
mass matrix of bus 
generalized mass matrix of appendage 
transpose of MTe 

rigid elastic coupling matrix of append- 
age 
rigid body mass matrix of appendage 

modulus of A,p 
generalized masses 
number of discrete points 

frequency-dependent matrix for mth ap- 
pendage (Eq. 19) 

force torque transformation matrix 

thruster force location matrix 

submatrix of Q 
submatrix of Q 
submatrix of Q 
submatrix of Q 
submatrix of Q 
generalized displacements 

q column of generalized displacements of 
appendage 

R(o) inverse of determinant 
R column of translations and rotations of 

bus 
column of translations and rotations of 
base of appendage 

r 

S j k  control loop 
S control transfer-function matrix 

T 
T, column of control torques 
Td column of disturbance torques 

column of torques applied on structure 

t, t j  time 

X ( f )  Fourier transform of x( t )  

XI, X z ,  X ,  
X 

coordinates of point A in bus coordinates 

translation of point 0 of bus 

x( t )  arbitrary time function 

Y 1 , Y 5 , Y 3 coordinates of P j  in appendage coordi- 
nates 

Y structure transfer-function matrix 
Z modal transfer function 

a jk control parameter 

al, a2, a, direction cosine of thrusters 

pik  control parameter 
{k  control parameter 

A ( ~ )  determinant 

82 control parameter 
8 ( t )  unit-impulse function 
€2 control parameter 
& modal damping 

control parameter 

e,(t) rotation of bus 

&(t)  rotation of bus 
e,(t) rotation of bus 

8 rotation of bus 

+ j k  mode shapes at points of application Of 

forces F k  

modal matrix for forces on appendage qe 
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Nomenclature ( contd 1 

qT rigid-body-mode matrix 

phase angle of J a p  

0 circular frequency 

30 

oj natural frequencies 

{-} overbar means Fourier transform, 
Eq. (6) 
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